If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40x=61
We move all terms to the left:
5x^2-40x-(61)=0
a = 5; b = -40; c = -61;
Δ = b2-4ac
Δ = -402-4·5·(-61)
Δ = 2820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2820}=\sqrt{4*705}=\sqrt{4}*\sqrt{705}=2\sqrt{705}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-2\sqrt{705}}{2*5}=\frac{40-2\sqrt{705}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+2\sqrt{705}}{2*5}=\frac{40+2\sqrt{705}}{10} $
| 4(3x-^)=72 | | -8z−4=-9z | | -3(4r-2)+9=-14r+15+2r | | -8−10d=-8d | | y=-6(-1)-3 | | -2=3x+5+2 | | y=-6(-5)-3 | | -4y=-5y−10 | | 10+0.2x=16 | | -5m=-4m+6 | | 2(1-6m)=98 | | -13+8r=-3(r-3) | | n=-9+10n | | 2(1+6k)=86 | | 16=5x+8 | | -3=x+5+5+3x | | 7j=8j+9 | | 8(7+8n)=312 | | x2-2x=8. | | -88=8(-v-6) | | -81=-3(7n-1) | | 2x+4+4=10 | | 8−3b=-4b | | 2x+3+3x+6=9 | | 7+4m+10=15-2m | | 6x+4=-6+3x+16 | | -343=-7(7-6a) | | -5(5-3r)=-85 | | -u−8=5u+10 | | 2x+2+4=-4 | | -4+6c=6+4c | | -232=8(1+5x) |